Министерство образования Республики Беларусь Могилевский государственный университет продовольствия

А.Н. Спасков

МОДЕЛЬ СПИНА В ДИСКРЕТНЫХ РАССЛОЕНИЯХ И ПЕРИОДИЧЕСКИЕ ЗАКОНОМЕРНОСТИ КЛАССИФИКАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

(Спасков, А. Н. Модель спина в дискретных расслоениях и периодические закономерности классификации фундаментальных частиц / Могилев, 2007. 18 с. Деп. в ГУ "БелИСА" 21.06.07. - Д200724).

Могилев 2007

1. Введение

В данной работе предпринята попытка ввести понятие спина на базе расслоенных пространств. Элементарная частица в предлагаемой модели определяется как точечный объект, имеющий внутреннюю структуру, отраженную в хронологическом и энергетическом расслоениях. В свою очередь, базовое и расслоенное пространство наделяются дискретной Ha структурой порядка планковских масштабов. основе ЭТИХ представлений вводятся понятия пространства состояний и вектора состояния, что позволяет описывать частицеподобные состояния как суперпозицию векторов состояния в пространстве состояний. На основе полученной модели предлагается классификация частицеподобных состояний по принципу заполнения пространства состояний векторами состояния. В результате последовательного проведения этого принципа выявляются периодические закономерности классификации, и строится классификационная таблица. Анализ этой таблицы позволяет идентифицировать полученные состояния с реальными частицами и предсказать новые частицы.

2. Вектор состояния в модели дискретного расслоённого времени

Рассмотрим модель дискретного расслоённого времени. В качестве фундаментальной базы возьмём дискретное линейное время $\tau_n = t_0 \cdot n$, где $t_0 = \frac{t_p}{2}; t_p = \sqrt{\frac{Gh}{c^5}} \approx 5,4 \cdot 10^{-44} c$ – планковское время; n = 0,1,2...-целое число. Назовём τ_n -внешним временем и построим модель, в которой каждой точке внешнего времени соответствует некоторое внутреннее время, как функция внешнего.

Будем считать, что каждая точка τ_n является базой хронологического расслоения. Для этого-каждой точке τ_n приведем в соответствие ортонормированную систему координат *XYZ* с началом в точке τ_n и осью *Z*, в направлении положительного хода времени τ_n . Рассмотрим дискретное расслоение, состоящее из множества точек, задаваемых хронологическим радиус-вектором $\vec{t}(t_0 \cdot \cos \frac{\pi}{2}(n+k), t_0 \cdot \sin \frac{\pi}{2}(n+k), t_0)$, где k=1,2,3,4-начальное фазовое число. Рассмотрим комплексную плоскость *XY*. Проекция радиус-вектора \vec{t} на плоскость *XY* запишется в виде: $t_{xy} = t_0 \cdot e^{i\frac{\pi}{2}(n+k)}$ (См. рис.1). Назовём функцию t_{xy} – внутренним временем базы τ_n .

Возьмём начальную базу $\tau_0=0$, соответствующую началу отсчёта внешнего времени. Если ввести обозначение $\Phi_k = e^{i\frac{\pi}{2}k}$, то функция внутреннего времени в этом случае будет иметь вид: $t_{xy} = t_0 \cdot \Phi_k$. Введём энергетическое расслоение, определённое на базе точек внутреннего времени. Для этого приведём в соответствие каждой точке внутреннего времени базис X'Y'Z' с началом в точке t_{xy} и направлениями осей $\vec{X}' \uparrow \downarrow \vec{Z}$ и $\vec{Y}' \uparrow \uparrow \vec{t}_{xy}$ (см.рис.2).

рис.2

Определим правое энергетическое расслоение, как множество точек, задаваемых энергетическим радиус-вектором $\vec{E}^+(E_0\cos\frac{\pi}{2}(n+m), E_0\sin\frac{\pi}{2}(n+m), E_0)$ и левое расслоение, задаваемое радиусвектором $\vec{E}^-(E_0\cos\frac{\pi}{2}(n+m), E_0\sin\frac{\pi}{2}(n+m), -E_0)$.

Здесь $E_0 = E_p \approx 10^{19} \Gamma_{\mathcal{B}\mathcal{B}}$ - планковская энергия; m=0,±1,±2,±3.Если в плоскости X'Y'ввести комплексные координаты, то проекция радиусвектора \vec{E} на плоскость X'Y'для начальной фазы (n=0) запишется в виде: $E_{X'y'} = E_0 \cdot \Phi_m$.

Зададим комплексную функцию $\varphi = t_{xy} + E_{x'y'}$ так, чтобы действительному значению времени t_{xy} соответствовало мнимое значение энергии $E_{x'y'}$ и наоборот, т.е. $m = \pm (k \pm 1)$. Таким образом, для любого значения t_{xy} можно определить правое и левое энергетическое расслоение, а в каждом из этих расслоений можно задать 2 вектора \vec{E} с двумя возможными поляризациями. Рассмотрим, например, правое энергетическое расслоение, заданное на базе t_{xy} в фазе k=1.На рисунке 3

видно, что времени it₀ соответствуют два вектора с правой поляризацией ($E_o \cdot \Phi_{k+1}$ и $E_o \cdot \Phi_{k-1}$) и два вектора с левой поляризацией ($E_o \cdot \Phi_{-(k+1)}$ и $E_o \cdot \Phi_{-(k-1)}$).

рис.3

Таким образом можно определить 4 функции, которые изображаются в виде следующих диаграмм (См.рис.4):

$$\varphi^{k-1} = t_0 \cdot \Phi_k + E_0 \cdot \Phi_{k-1}$$

Совокупность значений времени и энергии, задаваемых функциями φ назовём пространством состояний. Будем описывать состояние системы двухкомпонентным вектором, причём состоянию, заданному в правом энергетическом расслоении будет соответствовать верхняя компонента, а состоянию, заданному в левом расслоении - нижняя. Таким образом, определим правый вектор состояния $\begin{pmatrix} \varphi_i \\ 0 \end{pmatrix}$, и левый вектор состояния $\begin{pmatrix} 0 \\ \varphi_i \end{pmatrix}$, где функция φ означает любую из определённых выше функций; i-

начальная фаза состояния. Например, вектор $\begin{pmatrix} \varphi_1^{k-1} \\ 0 \end{pmatrix}$ описывает правое состояние $\varphi_1^{k-1} = i t_0 + E_0$. Изобразим это состояние диаграммой:

рис.5

Назовём индекс і - числом заполнения фазового пространства функции ϕ . На рисунке 5 изображён вектор состояния $\phi = \vec{t}_{xy} + \vec{E}_{z'}$ в фазовом пространстве функции ϕ^{k-1} с числом заполнения і = 1. Как видно из рисунков 2 и 5, вектор $\vec{E}_{z'}$ всегда лежит в плоскости ХҮ и направлен по касательной к траектории, описываемой вектором \vec{t}_{xy} .

В дальнейшем условимся изображать состояния в виде следующих диаграмм (см. рис.6):

рис.6

Будем описывать различные состояния векторами состояния и их суперпозицией, причём постулируем, что каждому числу заполнения соответствует не более одного вектора состояния (см. рис.7):

Определим спин состояния, как момент энергии во внутреннем хронологическом пространстве:

$$\vec{S} = \left[\vec{E} \cdot \vec{t}\right].$$

Из определения видно, что проекции спина на ось Z различаются знаками для правого и левого энергетического расслоения:

$$\vec{S}_z^+ = \begin{bmatrix} \vec{E}^+ \cdot \vec{t} \end{bmatrix}_z = \frac{\hbar}{2}; \qquad \qquad \vec{S}_z^- = \begin{bmatrix} \vec{E}^- \cdot \vec{t} \end{bmatrix}_z = -\frac{\hbar}{2}$$

Таким образом, если описывать внутренние состояния элементарных частиц с помощью векторов состояния, то внутренние движения этих частиц будут описываться движением вектора состояния в пространстве состояний. В этом случае функция ϕ будет зависеть от параметра n, который определяется изменением внешнего времени τ_n . Рассмотрим, например, функцию

$$\varphi_1^{n+k-1} = e^{i\frac{\pi}{2}n} (it_0 + E_0).$$

Эта функция описывает вращение вектора состояния с частотой $\omega_0 = \frac{\pi}{2t_0}$ и периодом T=4t₀. Рассмотрим правый вектор состояния $\begin{pmatrix} \varphi_1^{n+k-1} \\ 0 \end{pmatrix}$, и изобразим на рисунке его движение в течение периода (см. рис.8):

рис.8

Как видно из рисунка, в процессе изменения параметра n, начало вектора \vec{E} вращается с частотой ω_0 в плоскости XY, а конец вектора \vec{E} вращается при этом с той же частотой ω_0 в плоскости X'Y'. В результате прецессии вектора \vec{E} вокруг оси Z' его проекция на ось XY остаётся постоянной ($\vec{E}_{z'} = E_{xy}$) и, следовательно, проекция спина на ось Z остаётся постоянной.

3. Классификация состояний

Используя свойство проекций спина, построим двухкомпонентную функцию $\Psi = \begin{pmatrix} \varphi^{\alpha} \\ \varphi^{\beta} \end{pmatrix}$ таким образом, что вектор, определяемый в верхнем расслоении φ^{α} имеет положительную проекцию спина на ось Z, а вектор, определяемый в нижнем расслоении φ^{β} - отрицательную. Таким образом можно построить 16 функций, которые расположим в виде матрицы 4 × 4:

$$\Psi = \begin{pmatrix} \begin{pmatrix} \varphi^{k-1} \\ \varphi^{k-1} \end{pmatrix} & \begin{pmatrix} \varphi^{k-1} \\ \varphi^{k+1} \end{pmatrix} & \begin{pmatrix} \varphi^{k-1} \\ \varphi^{-(k-1)} \end{pmatrix} & \begin{pmatrix} \varphi^{k-1} \\ \varphi^{-(k-1)} \end{pmatrix} & \begin{pmatrix} \varphi^{-(k+1)} \\ \varphi^{-(k-1)} \end{pmatrix} & \begin{pmatrix} \varphi^{-(k+1)} \\ \varphi^{-(k-1)} \end{pmatrix} & \begin{pmatrix} \varphi^{-(k+1)} \\ \varphi^{-(k+1)} \end{pmatrix} & \begin{pmatrix} \varphi^{-(k+1)} \\ \varphi^{-(k+1)} \end{pmatrix} & \begin{pmatrix} \varphi^{-(k+1)} \\ \varphi^{-(k+1)} \end{pmatrix} & \begin{pmatrix} \varphi^{-(k+1)} \\ \varphi^{-(k-1)} \end{pmatrix} & \begin{pmatrix} \varphi^{-(k-1)} \\ \varphi^{-(k-1)} \end{pmatrix} \end{pmatrix} \end{pmatrix} & \begin{pmatrix} \varphi^{-(k-1)} \\ \varphi^{-(k-1)} \end{pmatrix} & \begin{pmatrix} \varphi^{-(k-1)} \\ \varphi^{-(k-1)} \end{pmatrix} & \begin{pmatrix} \varphi^{-(k-1)} \\ \varphi^{-(k-1)} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

Как видно из построения, элементы матрицы обладают симметрией по перестановке верхних и нижних компонент, т.е., если $\Psi_j^i = \begin{pmatrix} \varphi^{\alpha} \\ \varphi^{\beta} \end{pmatrix}$, то

$$\Psi_i^j = \begin{pmatrix} \varphi^\beta \\ \varphi^\alpha \end{pmatrix}$$

Назовём элементы матрицы Ψ_j^i - вакуумными состояниями. Условимся, что если элемент Ψ_j^i описывает состояние, то элемент Ψ_j^j описывает антисостояние. Будем считать, что вектора состояния могут возникнуть в вакуумном состоянии при условии сохранения энергии и спина системы в момент возникновения. Это условие выполняется, если в правом и левом энергетическом расслоении одновременно возникает пара противоположных векторов состояния. Момент возникновения определяется фазой пространства состояний. Например, для фазы k=1 возможны образование функций

$$\left(\Psi_1^1\right)_2^1 = \begin{pmatrix} \varphi_1^{k-1} \\ \varphi_1^{k+1} \end{pmatrix}; \left(\Psi_1^1\right)_4^1 = \begin{pmatrix} \varphi_1^{k-1} \\ \varphi_1^{-(k+1)} \end{pmatrix}; \left(\Psi_1^1\right)_1^3 = \begin{pmatrix} \varphi_1^{-(k-1)} \\ \varphi_1^{k+1} \end{pmatrix}; \left(\Psi_1^1\right)_3^2 = \begin{pmatrix} \varphi_1^{-(k-1)} \\ \varphi_1^{-(k+1)} \end{pmatrix}.$$

На рисунке 3 парные вектора изображены пунктиром. Назовём определённую выше процедуру образования пары векторов состояния поляризацией вакуумного состояния. Аналогично можно проанализировать возможность поляризации вакуумного состояния для других фаз (k=2,3,4). Из этого анализа видно, что поляризация возможна только для недиагональных элементов матрицы ψ . Назовём недиагональные элементы матрицы ψ - внутренними вакуумными состояниями, а диагональные - смежными состояниями. Исходя из того, что механизм поляризации вакуума является необходимым для описания процессов возникновения, взаимопревращения и взаимодействий элементарных частиц, определим в дальнейшем элементарную частицу как суперпозицию векторов состояния в пространстве внутренних вакуумных состояний.

Смежным вакуумным состояниям можно придать следующий физический смысл: если ввести фундаментальную длину $l_0=2t_0$ ·с, то можно определить состояние $\begin{pmatrix} \varphi^{\alpha} \\ \varphi^{\alpha} \end{pmatrix}$, в котором правое и левое энергетические расслоения разделены пространственно-подобным интервалом l_0 . Таким образом, если исходить из гипотезы дискретного пространства и определить пространство как множество точек, то можно предположить, что каждая точка имеет структуру внутреннего вакуумного состояния, а пространственно-подобный интервал между любыми соседними точками

может иметь структуру смежного вакуумного состояния. На рисунке 9 изображён такой элемент дискретного пространства и соответствующая ему внутренняя структура.

рис.9

Рассмотрим внутренние вакуумные состояния. Число этих состояний равно 6-ти и их можно связать с известными 6-ю лептонами и 6-ю ароматами кварков. Введём следующие обозначения для недиагональных элементов матрицы ψ : $(\Psi)_2^1 = u$; $(\Psi)_3^1 = c$; $(\Psi)_4^1 = t$; $(\Psi)_3^2 = b$; $(\Psi)_4^2 = s$; $(\Psi)_4^3 = d$ и, соответственно, для антисостояний: $(\Psi)_1^2 = \alpha$; $(\Psi)_1^3 = c$; и т.д. В новых обозначениях матрица ψ без диагональных элементов примет вид:

$$\Psi = \begin{pmatrix} - & u & c & t \\ \widetilde{u} & - & b & s \\ \widetilde{c} & \widetilde{b} & - & d \\ \widetilde{t} & \widetilde{s} & \widetilde{d} & - \end{pmatrix}$$

В дальнейшем, в силу симметрии, ограничимся рассмотрением состояний и расположим их в виде следующей таблицы:

u	С	t
d	S	b

Таким образом, если определить элементарную частицу как суперпозицию векторов состояния в пространстве состояний у, то каждой суперпозиции будет соответствовать 6 частиц и 6 определённой античастиц. Построим соответствующие диаграммы, различным состояниям матрицы ψ (см. рис.10):

рис. 10

 Ψ^1 соответствует вакуумному состоянию. Матрица Матрица Ψ описывает состояния, в которых вектор состояния заполняет верхнее расслоение с начальной фазой k = 1. Эти состояния соответствуют частицам со спином $\vec{S} = \frac{\hbar}{2}$. Матрица ψ^{12} описывает состояние суперпозиции 2-х векторов состояния, которые заполняют начальные фазы k = 1 и k = 2 верхнего расслоения. Это состояние соответствует частицам $S = \hbar$. Интерпретируем это co спином состояние как бозон С перпендикулярной поляризацией. Матрица ψ^{13} соответствует бозону с параллельной поляризацией. Аналогично можно построить состояния с другими числами заполнения и свести их в следующую таблицу:

№	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
\ S					
1	$\langle \rangle$		\bigvee		\bigcup
	Ψ	Ψ^1	$\Psi^{12}(\Psi^{13})$	Ψ^{123}	Ψ^{1234}
2	\bigwedge		\bigoplus	\bigoplus	
	Ψ_1^1	$\Psi_1^{12}(\Psi_1^{13},\Psi_1^{14})$	$\Psi_1^{123}(\Psi_1^{134})$	Ψ_{1}^{1234}	
3	\bigoplus	\bigoplus	\bigoplus		
	$\Psi_{12}^{12}(\Psi_{13}^{13})$	$\Psi_{12}^{123}(\Psi_{12}^{124},\Psi_{13}^{134})$	$\Psi_{12}^{1234}(\Psi_{13}^{1234})$		
4	\bigoplus	$\bigcup_{i=1}^{n}$			
	Ψ_{123}^{123}	Ψ_{123}^{1234}			
5	\bigoplus				
	Ψ_{1234}^{1234}				
N	6+30	48	36	12	6

Из таблицы видно, что матрица ψ позволяет описывать 6 вакуумных состояний и, соответственно, антисостояний; 30 состояний, соответствующих скалярным бозонам со спином S=0 и, соответственно, антибозонам; 48 фермионов и 48 антифермионов со спином S= $\frac{1}{2}$; 36

,бозонных и 36 антибозонных состояний со спином S=1; 12 фермионов и 12 антифермионов со спином S= $\frac{3}{2}$; 6 бозонных и 6 антибозонных состояний со спином S=2. В итоге получается 132 состояния, соответствующих частицам и 132, соответствующих античастицам.

Рассмотрим фермионные состояния со спином S= $\frac{1}{2}$. Состояния с одним вектором можно интерпретировать как лептоны. Суперпозицию лептона и скалярного бозона можно интерпретировать как кварки в 3-х цветовых состояниях. Суперпозицию лептона и 2-х скалярных бозонов назовём Х-частицей, которая может находиться в 3-х цветовых состояниях. Суперпозицию лептона и 3-х скалярных бозонов назовём Y-частицей. Составим следующую таблицу:

N					Q
6	\square	e	μ	$ au^{-}$	-1
		v _e	$ u_{\mu}$	ν_{τ}	0
	Ψ^{lpha}				
18		u	с	t	$-\frac{2}{3}$
		d	S	b	$\frac{1}{3}$
	$\Psi^{lphaeta}_{lpha}$				
18		Xu	X_{c}	X _t	$-\frac{1}{3}$
		X_d	X _s	X_b	$\frac{2}{3}$
	$\Psi^{lphaeta\chi}_{lphaeta}$				
6		Yu	Y _c	Yt	0
		\mathbf{Y}_{d}	Y _s	$\mathbf{Y}_{\mathbf{b}}$	1
	$\Psi^{lphaeta\chi\delta}_{lphaeta\chi}$				

Если частицы, находящиеся во втором периоде таблицы интерпретировать как антикварки, то заряд фермиона в этом случае будет находиться по формуле:

$$\mathbf{Q} = \mathbf{Q}_1 + \frac{1}{3}k,$$

где Q₁ - заряд лептона соответствующего аромата (вакуумного состояния); k -число скалярных бозонов. Если распространить эту формулу на все фермионы, то получатся значения зарядов, приведенные в таблице.

Список использованных источников

- Даниэль С., Виалле М. Геометрический подход к калибровочным теориям типа Янга-Миллса // УФН, 1982. т. 136.
- Вяльцев А.Н. Дискретное пространство-время. М.: Наука, 1965. 400с.
- Спасков А.Н. Геометрическая интерпретация спина в модели расслоенного времени // Материалы междунар. науч.-тех. конф., Минск, 20-25 ноября 2000г. / Бел. гос. политех. академ.– Минск, 2000. – ч.2. – С.124.
- Спасков А.Н. Описание внутреннего движения электрона в модели циклического времени // Материалы IV-международной науч.-тех. конф. МГУП, 26-28 марта 2003г. / Могилевский гос. ун-т прод. -Могилев, 2003. – С. 64-65.
- Спасков А.Н. Описание внутреннего движения электрона в модели расширенной теории относительности / Могилев, 2003. – 25с. – Деп. В БелИСА 13.08.03. - №Д200366.

Оглавление

1.	Введение	.2
2.	Вектор состояния в модели дискретного расслоённого времени	.2
3.	Классификация состояний	10
C	писок использованных источников	17